Maximum Subarray
Problem
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [-2,1,-3,4,-1,2,1,-5,4]
,
the contiguous subarray [4,-1,2,1]
has the largest sum = 6
.
Solution
Typical DP Solution: O(n) time
public class Solution {
public int maxSubArray(int[] nums) {
if (nums == null || nums.length == 0) return 0;
int max = nums[0], len = nums.length;
int[] dp = new int[len];
dp[0] = nums[0];
for (int i = 1; i < len; i++) {
dp[i] = nums[i] + (dp[i - 1] > 0 ? dp[i - 1] : 0);
max = Math.max(dp[i], max);
}
return max;
}
}
Analysis
We need to find out the max sum of sub-array
Because the problem requires contiguous sub-array, it makes this problem become DP
The initial state is dp[0] = nums[0]
dp[i]
depends on whether [dp] > 0
, if so, dp[i] = dp[i - 1] + nums[i]
Otherwise we set dp[i] = nums[i]
because there is no need to add previous number
Notice that we need to find out the max sum, so we have max
and compare it with dp[i]
in the loop
At the end, we return max
not dp[len - 1]
!