Longest Palindromic Subsequence
Problem
Given a string s, find the longest palindromic subsequence's length in s. You may assume that the maximum length of s is 1000.
Example 1:
Input:
"bbbab"
Output:
4
One possible longest palindromic subsequence is "bbbb".
Example 2:
Input:
"cbbd"
Output:
2
One possible longest palindromic subsequence is "bb".
Solution
Recursive Solution using Two Pointers
public class Solution {
public int longestPalindromeSubseq(String s) {
if (s == null || s.length() == 0) return 0;
return helper(s, 0, s.length() - 1);
}
private int helper(String s, int start, int end) {
if (start == end) return 1;
if (start > end) return 0;
return s.charAt(start) == s.charAt(end) ? 2 + helper(s, start + 1, end - 1) : Math.max(helper(s, start + 1, end), helper(s, start, end - 1));
}
}
DP Solution with same idea above
public class Solution {
public int longestPalindromeSubseq(String s) {
if (s == null || s.length() == 0) return 0;
int len = s.length();
int[][] dp = new int[len][len];
for (int i = len - 1; i >= 0; i--) {
dp[i][i] = 1;
for (int j = i + 1; j < len; j++) {
if (s.charAt(i) == s.charAt(j)) dp[i][j] = 2 + dp[i + 1][j - 1];
else dp[i][j] = Math.max(dp[i][j - 1], dp[i + 1][j]);
}
}
return dp[0][len - 1];
}
}
Analysis
The idea of this problem is to use two pointers from left and right and compare the character
If s.charAt(left) == s.charAt(right)
, we shrink the interval and increment the result by 2
In the recursive solution, we use recursion to accomplish this
However, it's costly hence we use dp
to improve it
dp[i][j]
is the longest palindromic subsequence with substring i, j
both inclusive
The transition state is dp[i][j] = 2 + dp[i + 1][j - 1]
if s.charAt(i) == s.charAt(j)
Otherwise, dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1])
Notice that we update [i]
with [i + 1]
Hence we need to do this dp from the end to start to make sure [i + 1]
is always there
And to make sure j - 1
is already there, we init j = i + 1