Integer Replacement
Problem
Given a positive integer n and you can do operations as follow:
If n is even, replace n with n/2. If n is odd, you can replace n with either n + 1 or n - 1. What is the minimum number of replacements needed for n to become 1?
Example 1:
Input:
8
Output:
3
Explanation:
8 -> 4 -> 2 -> 1
Example 2:
Input:
7
Output:
4
Explanation:
7 -> 8 -> 4 -> 2 -> 1
or
7 -> 6 -> 3 -> 2 -> 1
Solution
Recursive Solution
public class Solution {
public int integerReplacement(int n) {
if (n <= 2) return n - 1;
if (n <= 4) return 2;
if (n == Integer.MAX_VALUE) return 32; //max = 2 ^ 31 - 1
if (n % 2 == 0) return 1 + integerReplacement(n / 2);
return 1 + Math.min(integerReplacement(n + 1), integerReplacement(n - 1));
}
}
Iterative Solution
public class Solution {
public int integerReplacement(int n) {
if (n <= 2) return n - 1;
if (n <= 4) return 2;
if (n == Integer.MAX_VALUE) return 32; //max = 2 ^ 31 - 1
int count = 0;
while (n > 1) {
count++;
if (n % 2 == 0) n /= 2;
else if ((n+1) % 4 == 0 && n != 3) n++;
else n--;
}
return count;
}
}
Analysis
The recursive solution is straightforward
We just need to handle some corner cases then use Math.min()
to decide whether move forward or backward
I don't have a proof of iterative solution yet.