Palindrome Partitioning
Problem
Given a string s, partition s such that every substring of the partition is a palindrome.
Return all possible palindrome partitioning of s.
For example, given s = "aab"
,
Return
[
["aa","b"],
["a","a","b"]
]
Solution
public class Solution {
public List<List<String>> partition(String s) {
List<List<String>> res = new ArrayList<>();
helper(res, new ArrayList<>(), s, 0);
return res;
}
private void helper(List<List<String>> res, List<String> list, String s, int start) {
if (start == s.length()) {
res.add(new ArrayList<>(list));
return;
}
for (int i = start; i < s.length(); i++) {
if (isPalindrome(s, start, i)) {
list.add(s.substring(start, i + 1));
helper(res, list, s, i + 1);
list.remove(list.size() - 1);
}
}
}
private boolean isPalindrome(String s, int start, int end) {
while (start < end) {
if (s.charAt(start++) != s.charAt(end--)) return false;
}
return true;
}
}
Analysis
This is a backtracking problem for sure
The difference between this solution and general backtracking solutions is that we call the recursion method only if we find valid situations
Therefore, we have a helper method to check palindrome from start
to i
every time in the loop
If we get palindrome, we add the substring from start
to i+1
(i+1 won't be covered) to the list
Notice that we return from recursion method when the given start
is equal to s.length()