4Sum
Problem
Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note: The solution set must not contain duplicate quadruplets.
For example, given array S = [1, 0, -1, 0, -2, 2], and target = 0.
A solution set is:
[
[-1, 0, 0, 1],
[-2, -1, 1, 2],
[-2, 0, 0, 2]
]
Solution
O(n^3)
public class Solution {
public List<List<Integer>> fourSum(int[] nums, int target) {
if (nums == null || nums.length < 4) return new ArrayList<>();
List<List<Integer>> res = new ArrayList<>();
int len = nums.length;
Arrays.sort(nums);
for (int i = 0; i < len - 3; i++) {
if (nums[i] + nums[i + 1] + nums[i + 2] + nums[i + 3] > target) break; //check min
if (nums[i] + nums[len - 1] + nums[len - 2] + nums[len - 3] < target) continue; //check current max
if (i != 0 && nums[i] == nums[i - 1]) continue; //check duplicates of bound i
for (int j = i + 1; j < len - 2; j++) {
if (j != i + 1 && nums[j] == nums[j - 1]) continue; //check duplicates of bound j
int low = j + 1, high = len - 1;
while (low < high) {
if (nums[i] + nums[j] + nums[low] + nums[high] < target) low++;
else if (nums[i] + nums[j] + nums[low] + nums[high] > target) high--;
else {
res.add(Arrays.asList(nums[i], nums[j], nums[low], nums[high]));
while (low < high && nums[low] == nums[low + 1]) low++; //skip duplicates of binary search
while (low < high && nums[high] == nums[high - 1]) high--; //skip duplicates of binary search
low++;
high--;
}
}
}
}
return res;
}
}
Aanalysis
Similar idea from 3Sum
The only difference is that we have one more loop because the problem requires 4 numbers
Notice that how we avoid duplicates in the second for loop
, just checking whether j
is the first iteration and duplication
We don't need the first two if
statements because we already did them in the i
loop and j
starts from i + 1